
Retrieving Data - SELECT Page 1

Retrieving Data Study Notes
 SELECT

A query is simply a question or request to the database.

SQL statements should always end with a semicolon, even though they may run without them.

The terms ‘Records’ and ‘Rows’ are often used interchangeably.

The terms ‘Fields’ and ‘Columns’ are often used interchangeable.

Text values should be enclosed in single or double quotes.

Numeric values for numeric data type fields should not be enclosed in quotes, even though they will
work with quotes in MySQL.

How do I Switch to the Right Database?
To let MySQL know what database to work with, execute the USE statement. This statement changes

the current database to the one specified. It remains the current database until another USE statement

is executed or the session is closed.

Practice:
USE BookLane;

Know Your Database
It’s important to know the tables and fields in your database so you can work more effectively and

efficiently. Here’s an EER diagram of the tables and fields in the BookLane database. Notice the field

names use upper camel case, meaning each word in the name begins with uppercase.

Retrieving Data - SELECT Page 2

Does Capitalization and Indentions Matter?
Upper/lower case does not matter to MySQL, but it does matter to good developers. Using a

capitalization standard helps with readability and helps spot errors which saves time and money. Many

developers put keywords and clauses in uppercase, and other words in lowercase or mixed case. The

most important thing is to be consistent!

For this class, please use uppercase for all keywords and clauses. Use upper camel case for field names

as indicated in the EER diagram shown earlier in this document.

Note: The BookLane database was created using camel case for table names, but MySQL shows them as

all lowercase. The BookLane database also uses camel case for column names as seen in the EER

diagram above.

MySQL recognizes the end of a statement when it sees the semicolon, not the end of a line. Frequently

a statement spans across multiple lines, with each clause indented on a new line for readability.

Example:
SELECT *

 FROM Customers;

How do I Retrieve Data?
The SQL SELECT Statement is used to retrieve data from tables.

The syntax of an SQL statement provides the basic structure, or rules, for a command. The SELECT
statement’s syntax looks pretty complicated, but it's actually not that difficult; It just has a lot of
variations.

Refer to the syntax of the SELECT Statement
shown here.

• Optional clauses and keywords are shown in
square brackets

• SELECT and FROM clauses are required…
 notice they are not in brackets

• The SELECT clause is followed by the column
names you wish to display (or * if you want all columns)

• The FROM clause is followed by the tablename that the data is coming from

• Each clause begins with a keyword

• As a default, every record (row) in the table will be displayed

Practice:
SELECT *

 FROM Customers;

After a SELECT statement is executed, the Result Grid

will show the records. The Action Output will show the

number of rows affected, or the total records returned.

SELECT [DISTINCT | UNIQUE] (*, columnname [AS alias], …)
 FROM tablename
 [WHERE condition]
 [GROUP BY group_by_expression]
 [HAVING group_condition]
 [ORDER BY columnname];

Retrieving Data - SELECT Page 3

How do I Limit the Fields Retrieved?
If you only want specific fields (columns) in your results, use a select list like this:

Practice:

SELECT CustomerID, LastName, FirstName

 FROM Customers;

How do I Limit the Records Retrieved?
If you only want specific records (rows) in your results, use the WHERE clause.

Practice:

SELECT *

 FROM Customers

 WHERE CustomerID = 1004;

Practice:

SELECT *

 FROM Customers

 WHERE CustomerID < 1004;

Practice:

SELECT *

 FROM Customers

 WHERE CustomerID > 1002 AND CustomerID < 1006;

Retrieving Data - SELECT Page 4

Useful Operators:
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to
!= Not equal to
AND Both conditions must be true
OR Either condition must be true
NOT Reverses the condition
BETWEEN Between inclusive (includes operators)
LIKE Example: LIKE ‘ROM%’

Will locate data that begins with ROM, doesn’t matter what follows.
% is the wildcard that represents no characters to any length of characters
_ is the wildcard that represents one and only one character

IN Example: IN(‘A’, ‘B’, ‘C’) Will locate data that has A or B or C.

Practice:

SELECT *

 FROM Customers

 WHERE CustomerID BETWEEN 1002 AND 1006;

Notice 1002 and 1006 are also included, not just the numbers ‘in between’ them. That’s because the

BETWEEN clause is inclusive in MySQL.

Practice:

SELECT *

 FROM Customers

 WHERE State IN('CA', 'WA', 'NY');

Retrieving Data - SELECT Page 5

Practice:

SELECT *

 FROM Customers

 WHERE State NOT IN('CA', 'WA', 'NY');

Notice the resulting records in this NOT condition are the reverse set of those in the above example

without the NOT.

Practice:
SELECT *

 FROM Customers

 WHERE LastName LIKE 'MC%';

How do I Search for NULL values?
Recall that NULL means there is no value at all. Therefore, you cannot locate NULL using the = operator.

You must use the ‘IS NULL’. You can use ‘IS NOT NULL’ to reverse the results.

Practice: View the orders that have not shipped
SELECT *

 FROM orders

 WHERE ShipDate IS NULL;

Notice what happens when you forget and use = NULL instead. This should create an error message but
it doesn’t. It looks as though it worked and that there are no orders that haven’t shipped.

Practice COMMON problem:
SELECT *

 FROM orders

 WHERE ShipDate = NULL;

Retrieving Data - SELECT Page 6

How do I Sort the Results?
As a default, MySQL displays the result in the least costly way to retrieve your records. Frequently that’s

in the order they were entered into the table. Most of the time however, we need our records

displayed in a specific order. Use the ORDER BY clause to specify the order the records should be

displayed.

Practice:
SELECT *

 FROM Customers

 ORDER BY LastName, Firstname;

To order from greatest to least, add DESC (descending) after the column name.

Practice:
SELECT *

 FROM Customers

 ORDER BY LastName DESC, Firstname;

How do I Limit the Results to the First 5 Rows?
To limit the results to the first however many, use the LIMIT clause.

Practice:
SELECT *

 FROM Customers

 ORDER BY LastName, Firstname

 LIMIT 5;

Retrieving Data - SELECT Page 7

How do I Concatenate?
Use the CONCAT() function to combine text fields and/or literals values. Use single or double quotes

around the literal values.

Practice:
SELECT CONCAT(LastName, ', ', FirstName)

 FROM Customers;

Practice:
SELECT CONCAT('Full Name: ', LastName, ', ',

FirstName)

 FROM Customers;

How do I Change the Column Heading?
Column headings normally display as the field names or the expression used. To specify a different

column heading, use a column alias. Notice in the last two examples, the column header for the

concatenated column is the actual concatenation expression. To indicate a better header, use an alias

as shown below. If an alias name contains spaces or special symbols, the name must be enclosed in

quotation marks. The ‘AS’ is actually optional and can be left out. The statement is more readable if the

AS keyword is used, so I recommend you use it.

Practice:
SELECT CONCAT(LastName, ', ', FirstName) AS 'Customer Name'
 FROM Customers;

SELECT CustomerID AS ID, LastName AS 'Last Name'

 FROM Customers;

Retrieving Data - SELECT Page 8

How do I Calculate?
Pay attention to the Order of Operation rules when calculations are included, otherwise you’ll get

unexpected results.

 Arithmetic operations are executed left to right.

 Multiplication and division are solved first, then addition and subtraction.

 This order can be overridden with parenthesis just as in algebra.

For the first example, remember that multiplication and division are done first, so 2*3 = 6, add that to

11 which gives us 17, and then subtract 2 from it, giving us 15. Addition and subtraction are on the

same level, so we perform these left to right, whichever comes first.

In the second example, parentheses override the order of operation and force the 3-2 to be done first.

That's 1, then multiply that by 2, and add that to 11, giving us 13.

In the third example, we have multiplication and division so we do these left to right... 8/2 = 4, *3 = 12,

add that to 2 = 14.

And the fourth example, parenthesis forces the 2+8 to be done first, that's 10, divided by 2 = 5,

multiplied by 3 = 15.

Practice:
SELECT Title, Retail-Cost AS Profit

 FROM Books;

Order of Operation Examples:

11 + 2 * 3 – 2 = 15

11 + 2 * (3 – 2) = 13

2 + 8 / 2 * 3 = 14

(2 + 8) / 2 * 3 = 15

Retrieving Data - SELECT Page 9

How do I Suppress Duplicates?
If you want to list only the different (distinct) values in a table, use the DISTINCT clause. The DISTINCT

clause allows you to suppress duplicates from the result set and return only distinct values.

Practice:
SELECT DISTINCT State

FROM Customers

ORDER BY State;

Important note: The DISTINCT keyword is applied to all columns in the colomn list

Practice:
SELECT DISTINCT State, Zip

 FROM Customers

 ORDER BY State;

Again: The DISTINCT keyword is applied to all columns in the colomn list, even if it doesn’t look like it.

Notice the () in this practice makes it look like the DISTINCT only applies to State, but the results show it

applies to all columns in the column list.

SELECT DISTINCT(State), Zip

FROM Customers

ORDER BY State;

